Highly excited and exotic meson spectroscopy from lattice QCD

Christopher Thomas, Jefferson Lab

thomasc@jlab.org

MENU 2010, College of William \& Mary, May 2010

With Jo Dudek, Robert Edwards, Mike Peardon, David Richards and the Hadron Spectrum Collaboration

Overview - reminder

Light meson spectroscopy

GlueX (JLab), BESIII, PANDA

Exotics $\left(1^{-+}, \ldots\right)$?

Photocouplings

Extracting excited meson spectra using Lattice QCD...

Photoproduction at GlueX (JLab 12 GeV upgrade)

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from correlation functions of meson interpolating fields

$$
O(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x)
$$

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from correlation functions of meson interpolating fields

$$
O(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x)
$$

$$
\begin{aligned}
C_{i j}(t) & =<0\left|O_{i}(t) O_{j}(0)\right| 0>\quad Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n> \\
& =\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|O_{i}(0)\right| n><n\left|O_{j}(0)\right| 0>
\end{aligned}
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z) from correlation functions of meson interpolating fields

$$
O(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x)
$$

$$
\begin{aligned}
C_{i j}(t)= & <0\left|O_{i}(t) O_{j}(0)\right| 0>\quad Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n> \\
= & \sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|O_{i}(0)\right| n><n\left|O_{j}(0)\right| 0> \\
& \xrightarrow[t \rightarrow \infty]{ } \frac{Z_{i}^{(0)} Z_{j}^{(0) *}}{2 E_{0}} e^{-E_{0} t}
\end{aligned}
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators $C_{i f}(t) \quad(N \times N$ matrix $)$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators $C_{i j}(t) \quad(N \times N$ matrix $)$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)}
$$

$$
\left(t \gg t_{0}\right)
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators $C_{i j}(t) \quad(N \times N$ matrix $)$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} O_{i}
$$

$Z^{(n)}$ related to eigenvectors

$$
Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n>
$$

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

3D in continuum:

Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

3D in continuum:

Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

On lattice:
Finite number of irreps: $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{E}$

Irrep	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	E
dim	1	1	3	3	2
cont. spins	$0,4,6, \ldots$	$3,6,7, \ldots$	$1,3,4, \ldots$	$2,3,4, \ldots$	$2,4,5, \ldots$

(and others for half-integer spin)

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\langle\mathrm{O}| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

'Subduce' operators on to lattice irreps $(J \rightarrow \Lambda)$:

$$
\langle 0| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

'Subduce' operators on to lattice irreps ($J \rightarrow \Lambda$):

$$
\langle\mathrm{O}| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

- As an example: three degenerate 'light' quarks ($\mathrm{N}_{\mathrm{f}}=3, \mathrm{M}_{\pi} \approx 700 \mathrm{MeV}$)
- Dynamical (unquenched). Only connected diagrams (isovectors and kaons)
0.6

Z values - spin 4

Multi-particle states?

Multi-particle states?

Summary and Outlook

Summary

- First results on light mesons - technology and method work
- Spin identification is possible using operator overlaps
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrids?)

Outlook - ongoing work

- Multi-meson operators
- Disconnected diagrams - isoscalars
- Baryons (Robert Edwards' talk on Friday)
- Photocouplings

Extra Slides

Exotics summary

Kaons

Lower the light quark mass $\left(\mathrm{N}_{\mathrm{f}}=2+1\right)-\mathrm{SU}(3)$ sym breaking

M_{π} / MeV	700	520	440	400	c.f. physical M_{K} / M_{π} 1

No longer have (a generalisation) of C-parity as a good quantum number

Combine $\mathrm{J}^{\mathrm{P}+}$ and $\mathrm{J}^{\mathrm{P}-}$ operators
Physically axial kaon $\left[\mathrm{K}_{1}(1270), \mathrm{K}_{1}(1400)\right]$ mixing angle suggested $\approx 45^{\circ}$
But...

Kaons

Kaons - Overlaps in T_{1}^{+}

$$
\begin{aligned}
& 16^{3} \\
& M_{\pi} \approx 520 \mathrm{MeV} \\
& M_{K} / M_{\pi} \approx 1.2
\end{aligned}
$$

$\left(\begin{array}{l}16^{3} \\ M_{\pi} \approx 400 \mathrm{MeV} \\ M_{\mathrm{K}} / M_{\pi} \approx 1.4\end{array}\right.$

Kaons - spectrum

